Best Constants in Inequalities Involving Analytic and Co-Analytic Projections and Riesz’S Theorem in Various Function Spaces
نویسندگان
چکیده
\begin{abstract} Let $P\pm$ be the Riesz's projection operator and let $P_-= I - P_+$. We consider estimates of expression $\|( |P_ + f | ^s |P_- |^s) ^{\frac{1}{s}}\|_{L^p (\mathbf{T})}$ in terms Lebesgue $p$-norm function $f \in L^p(\mathbf{T})$. find accurate for $p\geq 2$ $0<s\leq p$, thus significantly improving results from \cite{KALAJ.TAMS} where it is considered $s=2$ $1<p<\infty$. Interestingly, this range $s$ there holds appropriate vector-valued inequality with same constant. Also, we obtain right asymptotic constants large $s$. This proves conjecture Hollenbeck Verbitsky on Riesz some cases. As a consequence inequalities have proved paper get Riesz-type theorems conjugate harmonic functions various spaces. In particular, slightly general version Stout's theorem Lumer Hardy spaces obtained by new approach. \end{abstract}
منابع مشابه
compactifications and function spaces on weighted semigruops
chapter one is devoted to a moderate discussion on preliminaries, according to our requirements. chapter two which is based on our work in (24) is devoted introducting weighted semigroups (s, w), and studying some famous function spaces on them, especially the relations between go (s, w) and other function speces are invesigated. in fact this chapter is a complement to (32). one of the main fea...
15 صفحه اولBest Constants in Kahane-Khintchine Inequalities in Orlicz Spaces
Several inequalities of Kahane-Khintchine’s type in certain Orlicz spaces are proved. For this the classical symmetrization technique is used and four basically different methods have been presented. The first two are based on the well-known estimates for subnormal random variables, see [9], the third one is a consequence of a certain Gaussian-Jensen’s majorization technique, see [6], and the f...
متن کاملAnalytic centers and repelling inequalities
The new concepts of repelling inequalities, repelling paths, and prime analytic centers are introduced. A repelling path is a generalization of the analytic central path for linear programming, and we show that this path has a unique limit. Furthermore, this limit is the prime analytic center if the set of repelling inequalities contains only those constraints that ‘‘shape’’ the polytope. Becau...
متن کاملmanipulation in dubbing and subtitling
پژوهش حاضر در چارچوب مکتب دستکاری قرار گرفت و با استفاده از تقسیم بندی دوکات (2007) از شیوه های دستکاری، به دنبال یافتن پاسخ برای پرسش های زیر بود: 1-رایج ترین شیوه دستکاری در دوبله فیلم ها کدام است؟ 2-رایج ترین شیوه دستکاری در زیرنویس فیلم ها کدام است؟ 3-دستکاری در دوبله فیلم ها رایج تر است یا در زیرنویس آن ها؟ این پژوهش از نوع تحقیقات توصیفی- مقایسه ای و پیکره ای می باشد. پیکره تحقیق شا...
Analytic Sheaves in Banach Spaces
We introduce a class of analytic sheaves in a Banach space X, that we shall call cohesive sheaves. Cohesion is meant to generalize the notion of coherence from finite dimensional analysis. Accordingly, we prove the analog of Cartan’s Theorems A and B for cohesive sheaves on pseudoconvex open subsets Ω ⊂ X, provided X has an unconditional basis.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Potential Analysis
سال: 2022
ISSN: ['1572-929X', '0926-2601']
DOI: https://doi.org/10.1007/s11118-022-10021-0